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Abstract : The paper proposes to study the mathematical formulation of quantum mechanics. The foundations of quantum 

mechanics are concerned more or less with Hilbert space; the theory of which furnishes the mathematical by ground for the 

application of lattice theory in quantum. The main concepts of states, observables and propositions in quantum mechanical 

formalism, three approaches to quantum mechanics have evolved – (i) the basic notions of states and observables; (ii) takes the 

observables as the basic concept, and (iii) draws it authority directly from experiment. This paper is devoted to the study of the 

first two formulations of quantum mechanics and to show that the latter, both from foundational as well as technical point of 

view, is preferable to the former.  
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0. Introduction 
The paper proposes to study the mathematical formulation of quantum mechanics. Several models to describe a quantum 

system have been introduced so for but it was never claimed to be unique although more than hundred research papers have been 

written and also there are several books related to this subject. The foundations of quantum mechanics are concerned more or less 

with Hilbert space; the theory of which furnishes the mathematical by ground for the application of lattice theory in quantum. 

Antoine, J. P. [1] and Maderid, R. de la [16] who studied quantum mechanics beyond Hilbert space have had to be considered 

Rigged Hilbert space instead of Hilbert space.  

Considering the main concepts of states, observables and propositions in quantum mechanical formalism, three approaches to 

quantum mechanics have evolved. The first approach due to Dirac [8], Jordan, Neumann and Wigner [14] takes the basic notions 

of states and observables; the second due to Segal [19-21] alone takes the observables as the basic concept, whereas the third due 

to von Neumann [5, 25], Birkhoff and von Neumann [6], Birkhoff [5], Mackey [15], Varadrajan [23, 24], Srinivas [22], Gudder 

[11, 12], Ferroer [10], Gleason [11], Barbara [2, 3], Boris Ischi [7], Navara [17], Randall and Foulis [18], Bell [4], Dirk Aerts [9] 

and others.  

This paper is devoted to the study of the first two formulations of quantum mechanics and to show that the latter, both from 

foundational as well as technical point of view, is preferable to the former. Let us begin with the classical postulates for quantum 

mechanics mainly due to Dirac [8].  

Postulate 1.2.1. Each eigenstate of a quantum system at any particular time is represented by a state function Ψ or by a ket 

vector , which may be looked upon as a ray in a complex Hilbert space. Any given state can always be represented as a linear 

combination of eigenstates of the system. A ket vector corresponding to a state as well as its multiple represents the some state. The 

hermitian adjoint of Ψ or of   corresponds to 

  or a bra vector . The inner product of two state vectors is written as :  

* 3 *( ) ( ) ; where ( )r r d r r               (1.1) 

denotes the complex conjugate of  ( )r . 
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 (1.2) 

If  is a representative of a state, then its normalization conditions can be expressed as: 

  = 1 and  = *, (1.3) 

where * denotes the complex conjugate of ; and the condition of orthogonality of  and  or of   and  or of  

and  can be expressed by relation: 

  = 0 (1.4) 

An operator  =   is defined on a set of kets as will as on that of bras by setting: 

  Ψ =   =   = Ψ ;  (1.5) 

 ( ) ,                     (1.6)   

where the matrix element  associated between two states  and  is giving by in any of the three equivalent form: 
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 (1.7) 

of which      is the most commonly used notation. 

The matrix element  
 of the hermitian adjoint operator  

 is given by: 

 
* .                    (1.8) 
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The inner product     of bra   and ket    can easily be seen to satisfy the following conditions:  

 *.          (1.9) 

  1 1 2 2 1 1 2 2
* *

1 1 2 2 1 1 2 2

(a) 

(b) ;
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        
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 (1.10)  

 where *( 1,2)i i   is the complex conjugate of 
i    

 0     (1.11) 

 0     for all  iff <  = 0 (1.12) 

It follows from the superposition principal that the system of states of a quantum system form a linear manifold which with 

the above four conditions is a complex Hilbert space. This is the fundamental principle of the quantum mechanics. 

Postulate 1.2.2. An observable (i.e. measurable property) of a quantum system corresponds to a self–adjoint (or hermitian) 

operator    with a complete set of orthonormal eigenkets and real eigen values  , i.e., 

         ; (1.13) 

           ; (1.14) 

 


 


               (1.15) 

where the symbol   is to be understood as the Kronecker symbol if   and    lie in the discrete spectrum and the Dirac delta 

function       if either or both lie in the continuous spectrum. Similarly the summation in the completeness relation 

(equation (1.15)) is to be regarded as an integration over the continuous spectrum.  

It can be easily shown that the collection of all self–adjoint operators on a Hilbert space form a real Banach space which can 

be partially ordered. As a matter of fact this collection is about as far being a lattice as a partially ordered set can be, for it can be 

shown that two operators in the set have a infimum iff they are comparable. This whole situation is intimately related to the 

quantum of commutatively for the algebra of operators and is too complicated for us to explore here.  

Postulate 1.2.3. If the measurement is performed on a system to determine the value of the observable , the probability of 

finding the system, described by the state vector  , to have  with eigen value   is given by  

 
2

    

In other words,     is the probability amplitude of observing the value  . 

If a system is in the state defined by one of the eigenkets say  , of a self adjoint operator  and not in any other state defined 

by any ket then the state is a pure state and the probability of finding the system in that state is one similarly, if the system is in 

the another state defined by another ket    and not in any other state, then it is in the pure state. If the system is described by a 

number of kets with different probabilities, then the system is in the mixed state.  

Postulate 1.2.4. The position and momenta operators of a quantum particle obey the following rule : 

 [ , ] ( , 1,2,3) i jq p i ij i j   (1.16) 

where q and p are cononical co-ordinates and momenta; the symbol [,] is to be understood as Poisson bracket; ђ, the Planck 

constant and δij, the Kronecker delta. 

All the previous postulates are concerned with relations between states and observables of a quantum mechanical system at a 

given instant of time, i.e. they are the postulates of quantum static. Therefore to get complete theory we must consider the 

connection between different instants of time leading to quantum dynamics.   

Postulate 1.2.5. The dynamical beheviour of a quantum system is described by the Schrödinger equation  

 
1

( ) ( ) 0s st H t
i t

 


   


 (1.17)  

where the subscript identifies the Schrödinger picture [8, p. 111] according to which it varies in time in conformity with the above 

differential equation and H, the Hamiltonian operator of the system, corresponds to the translation operator of the system, 

corresponds to the translation operator for infinitesimal time translations. By this is meant the following : 

Suppose the time evaluation of the state vector can be obtained by thy action of an operation 0( , )t t  on the initial state 

0( )s t   such that  

 0 0( ) ( , ) ( ) ;s st t t t       (1.18) 

 0( , ) 1t t    (1.19) 

Conversation of probability requires that the norm vector ( )s t   be constant in time : 

0 0

0 0 0 0

( ) ( ) ( ) ( )

( ) ( , ) ( , ) ( ) ;
s s s s

s s

t t t t

t t t t t t

   

   

    

  
  (1.20) 

and therefore  

 0 0( , ) ( , ) 1t t t t     (1.21) 

This dose not yet guarantee that  is unitary. For this to be the case, the following equation must hold : 

 0 0( , ) ( , ) 1t t t t     (1.22) 

This condition will hold of  satisfies the group property : 

 1 1 0 0( , ) ( , ) ( , )t t t t t t     (1.23) 
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If, in the above equation, we set t = t0 and assume its validity for t0 < t1, we then obtain  

 
0 1 1 0( , ) ( , ) 1t t t t     (1.24) 

whence  1

0 1 1 0( , ) ( , )t t t t    (1.25) 

Multiplying (1.24) on left by    and using (1.21), we have  

 1

1 0 0 1 1 0( , ) ( , ) ( , )t t t t t t      (1.26) 

Hence  is unitary. 

If we let t be infinitesimal close to t0 with t – t0 = δt, then to first order in δt, we may write  

 0 0( , ) 1
i

t t t H t      (1.27) 

In order that  be unitary, H must be Hamiltonian. The dimension of H is that of an energy. Equation (1.18) for infinitesimal 

case thus reads  

 0 0 0( ) ( ) ( )s s s

i
t t t H t t            (1.28) 

which in limit δt  0 becomes the equitation (1.17), since by definition 

  1

0
lim( ) ( ) ( ) ( )s s s
t

t t t t t
t

   




      


 (1.29) 

These postulates of quantum mechanics are effective only in the case of the system of a finite number of degrees of freedom. 

Moreover, they involve the concepts of states and observables separately, where as in quantum mechanics, it appears 

mathematically as well as physically that observables play a fundamental role. Observables are considered to behave as self-

adjoint operators on a Hilbert space, which are not necessarily bounded, in which simple algebraic operations on non-

cummulative self-adjoint operators together with various possibilities for treating unbounded in terms of bounded operators 

strongly suggests the limitation to bounded ones. Considering the above mentioned facts Segal [19, 20] has studied a closed 

system of observables U isomorphic to the system of all bounded self-adjoint operators on a Hilbert space for describing a 

quantum mechanical system for its secureness. In this connection he propounded the following postulates :  

A closed system of bounded observables U is a quantum mechanical system if it is a real Banach space in which squares exist 

and which satisfies :  

(i)  ||X2|| = ||X||2 for all X  U 

(ii)  X2 is a continuous function of X. 

(iii) ||X2 - X2||  max [||X2||, ||Y2||]  

Form an empirical point of view, a state exists only as a rule which assigns to each bounded observable its expectation value 

in the state. A state of U is defined as a real valued function m on U such that  

(iv) m (X + Y) = m(X) + m(Y)  

 m(λX) = λm (X), for real λ 

(v) m(X2)  0  

(vi) m(I) = 0, where I is the unit observable.  

Thus a state must be some observable sort of normalised positive linear functional on the observables. A pure state is one 

which is not a linear combination with positive co-efficients of two states, on the other hands, if it is so, this state is called mixed 

state. In the state m, m(X) is called the expectation value of m. A collection of states of U is full if for every two observables there 

is a state in the collection in which the observables have different expectation values. For any two observables X and Y the 

pseudo-product X Y  is defined by the equation 

(vii)  
2 21

[( ) ( ) ] 
4

X Y X Y X Y      

If the pseudo-product satisfies the following laws for all x, y, z  U and for any real number λ 

(viii) ( ) ( )X Y Z X Y Z  

(ix) ( )X Y Z X Z Y Z    

(x) ( ) ( )X Y X Y   

 then U is said to be commutative system.  

An observable of U is called non-negative if it is a sum of squares and if for any two observables X and Y, X – Y is non-

negative, then X is said to greater then Y and is written as X  Y. It can be easily seen that with this ordering the system can be 

partially ordered but, in general, it can’t be a lattice relative to the partial ordering [19]. 

Let BC be a collection of commutative observables in U and Bg, a system generated by the elements of BC. Then it can be 

shown that Bg is isomorphic to the system of all real valued continuous functions on a compact Hausdorff space XC. The spectral 

value of an observable are the values of the function corresponding to the observable in the isomorphism. Moreover it follows that 

for any arbitrary state m there exists a regular probability measure  on XC such that  

(xi) ( ) ( )  ( ),  .
C

gm x X d x B


      

where X(δ) is a function on XC corresponding to X. Hence the condition that a set of observables will be in a given set of real 

numbers is given by the probability. That an observables X lies in a Borel set E of real numbers for all X in the subset 
1CB of BC is 

(), where  
1

( )
C

X
X B

X


   and { : ( ) }.XX X E    

Here either E is closed or 
1CB  is countable. 

The notion of simultaneous measurability of observables is introduced with the help of their definite values. 

An observable X is said to have a definite value in a state m if any of the following equivalent conditions is satisfied : 
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(xii)  the spectral values of X about its expectation values is zero. 

(xiii) m is pure on the subsystem generated by X  

(xiv) m(X2) = (m(X))2 

A collection of observables is simultaneously measurable if the system which they generate has a full set of states in each of 

which every observable in BC has a definite value. It is easy to see that a collection of observables is simultaneously measurable 

iff it is commutative. This fact establishes a coincidence of simultaneous measurability with commutatively. 

On the strength of these postulates, all of the physically plausible and conventionally accepted principle of quantum 

phenomenology may be established. The proofs are based on the familiar results and method of abstruct analysis.  

We have seen that Segal [19-21] has considered a non-commutative structure of bounded observables rather than lattice 

structure. Such a structure is then equipped with a linear functional which is interpreted as expectation value; but the connection 

with the lattice theory is then lost. 

The connecting link between the lattice and the observables and their expectation values can be established explicitly by 

important theorem of Gleason [11] only for conventional quantum mechanics. 
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